Attribution/License

e Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)

e This slideset and associated source code may not be distributed
without prior written notice

Please do not redistribute slides/source without
prior written permission.


http://www.mshah.io

Design Patterns

e Thinking about
Design with Patterns

et e Visitor Pattern
with Mike Shah

Associate Teaching Professor of Computer Sciences

b SIKR1 (B LSS JigasolS usigo (weniils ale azil

Thursday 17:30 GMT | Pl ccte | Gulidady

January 4th ola (g3 It

Social: @MichaelShah

@ Cesa_ut 0 @Cesa_ut O @Cesa_ut

Web : mshah.io
17:30 - 19:00 Thur, January 4, 2024 Courses: courses.mshah.io

~60-90 minutes | Introductory & YouTube .
Audience www.youtube.com/c/MikeShah



https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Associate Teaching Professor of Computer Sciences
Khoury College Northeastern University
Boston ,Massachusetts ,USA

FgrolS pgle jLuiils
€195 IS (g nl guygs ollils
50T s3adio Ul oygiwgy

TN RN

s

Computer Enginsering Sclentific Association of University of Tehran, ran
b oKL S PSSl JigapalS (usige gl sale yazil

[=]3=[=]
Thursday 17:30 GMT Plcte | dubay B 1]
lllll ola (g3 1€ E

@ @Cesa_ut ® @Cesa_ut

17:30 - 19:00 Thur, January 4, 2024

~60-90 minutes | Introductory
Audience

Originally, | was going to give a pretty ‘cookie cutter’ talk on design patterns

-- and to some extent that holds.
However -- as | looked at some design patterns, | decided some of those

patterns had more interesting trade-offs.

Thinking about
Design with Patterns

with Mike Shah

Social: @MichaelShah
Web : mshah.io

Courses: courses.mshah.io

3 YouTube

www.vyoutube.com/c/MikeShah



https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

One of the Best Titled Talks

e (The talk is also excellent) @%%ﬂﬂ |v%8nl? Timeline
e But the part | want you to focus on is
-- ‘The Minds of People’

o That’s you -- the students, engineers,
faculty, today
o So anything | think about, any design
choice we make, is something that we « 2020s: Design By Introspection
need to think about. Speed Is Found In o Inspect and Customize Everything
. . . The Minds Of People Everywhere, wheee?. ..
m Software engineering is about

e 1990s: OOP
o Inheritance and virtuals, wheee!. ..

e 2000s: Generic Programming
o Iterators and algos, wheee!. ..

Andrei Alexandrescu (&

making trade-offs, and engineering
requires critical thinking applied to
specific domains.

Link on YouTube:
https://www.youtube.com/watch?v=FJJTYQYB1JQ



https://www.youtube.com/watch?v=FJJTYQYB1JQ

Your Tour Guide for Today

by Mike Shah

Associate Teaching Professor at Northeastern University

in Boston, Massachusetts.

o | love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

o My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

| do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

o Usually graphics or games related -- e.g. Building 3D application
plugins

Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

Web
www.mshah.io

© YouTube

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io



http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

Code for the talk

Located here:

https://github.com/MikeShah/Talks/tree/main/2024/College of Farabi University

= O MikeShah / Talks

<> Code (~) Issues 9 Pullrequests (») Actions Projects

> 3-9 main « Talks / 2024
/ College _of Farabi_University of Tehran/

af

@



https://github.com/MikeShah/Talks/tree/main/2024/College_of_Farabi_University_of_Tehran
https://github.com/MikeShah/Talks/tree/main/2024/College_of_Farabi_University_of_Tehran

CFTT

College of Farabi Tech Talks

Abstract

The abstract that you read and enticed
you to join me is here!

Today | am going to be providing an introduction to design patterns, and going into depth on a
useful behavioral design patterns--the Visitor Pattern.

The proper use of design patterns can greatly simplify your codebase, making your software more
flexible, maintainable, and extensible.

We will also look at examples of code in open source projects to understand otherwise how these

patterns are deployed.

Students will leave this talk with the knowledge to go forward and implement the both the state and
the visitor pattern at a minimum, and otherwise have a better idea of when either of these patterns
may provide the right trade-off in your during software development.




Quick Review of Programming Paradigms

Establishing common ground -- minimum skills needed to proceed forward



C++ as a Multi-paradigm language

One of the great advantages of a language like C++ (and many
others -- e.g. Java, DLang, etc.) is that you can use multiple

programming paradigms.
o  This allows us to think about programming in different ways to solve
different problems.
Likely you have learned (or will one day learn) one of these

three programming styles:

o  Procedural Programming

o  Object-Oriented Programming

o  Functional Programming

o  (Of course other paradigms exist: Generic, Data-Oriented, structured, etc.)
Very briefly, | want to discuss a few features of each paradigm

which are used in each
o In some ways -- you can think of each paradigm as a ‘design pattern’ as
well for how you approach computation.

https://www.stroustrup.com/



https://www.stroustrup.com/

Procedural Programming [wiki]

A series of computational steps carried out by functions (i.e. procedures)

10


https://en.wikipedia.org/wiki/Procedural_programming

Basics of Programming - Procedural Style (1/2)

e Procedural Style programming
o functions
m Input of zero or one arguments to produce zero or more values
o Languages also support structured data
m e.g. ‘struct
m e.g. ‘union’
m e.g. enum and enum class
m e.g.arrays
o if/else if/felse conditional statements
o switch statements
m  What's the advantage of a switch-statement versus an if-else statement?

11



Example with enums (top-right, bottom-right)
o Allow us to ‘switch’ on data
o In object-oriented programming we instead
use ‘polymorphism’ (coming up)
(Bottom-left) An example of ‘events’ that we

might want to further store in an enum
m Uses a 'union’ of ‘structs’ to hold
data.

n Event{
C type;

uct mouse_event{
type;
1 left;
ool middle;
right;

key_event{
t type;
states[ 1

SHAPE{SQUARE, CIRCLE, PENTAGON, END};

STATE{RUNNING, OFF, PAUSED, ERROR};

| function(SHAPE s){

(s==SQUARE) {

(s==CIRCLE){
std::cout <<

{

id function(STATE s){

(s){
STATE: :RUNNING:
std::cout <<

STATE: : PAUSED:
STATE : : OFF :
STATE : : ERROR:




Object-Oriented Programming [wiki]

Objects (containing data+code) are main mechanism of computation

13


https://en.wikipedia.org/wiki/Object-oriented_programming

Basics of Programming - Object-Oriented Programming (OOP) (1/5)

e A common description of Object-Oriented language features would likely

include the terms:
o Encapsulation
m Associate data (attributes) and behaviors (functions) together
e This is how we create ‘objects’
e Thus -- Abstraction (Objects and Classes)
o Other ways of managing state involve -- Information hiding (public/private)
o Inheritance
m Ability to derive new types with a ‘is-a’ relationship
m Can use an ‘interface’ to derive new types.
o Polymorphism
m Not necessarily tied to inheritance hierarchies
e Functional polymorphism (polymorphic function) -- function overloading
m  Subtyping -- Derive new types in a hierarchy

14



Encapsulation
o Associate data (attributes) and behaviors
(functions) together
m This is how we create ‘objects’
m Thus -- Abstraction (Objects and
Classes)
e Other ways of managing state
involve -- Information hiding
(public/private)

Actor{

Actor(std::string name)

i

~Actor(){
}

id PrintName(){
std::cout <<

std::string mName;

t main(){

Actor s(
s.PrintName();

: mName(name){

<< mName << std::endl;




e Inheritance hctor

©) Ablllty to derlve new typeS Wlth a ‘is'a, Actor(std::string name) : mName(name){ }
relationship 1 ~Actor(){ }
o Can use an ‘interface’ to derive new types. e << Name << std: endl;

std::string mName;

MethodActor : Actor{

MethodActor(std::string name) : Actor(name){

}

PracticeMethod(){
std::cout <<

main(){

MethodActor* s = MethodActor(
s->PrintName();
s->PracticeMethod();

S,




Inheritance

(@)

Ability to derive new types with a ‘is-a’ ot
relationship I/}cit?r'(sfﬁgéict):?;% r}1ame) . mName(name){ }
Can use an ‘interface’ to derive new types.
m Note: Afunction that is ‘virtual’ can | R
provide a default implementation. Std;:mng sl
= Note: Afunction that is ‘purely virtual’ EEEE—GG_ .
must provide an implementation e <iorteidsniring name) : Thctarinansit
m Note: The ‘destructor’ of a base class )
should be marked ‘virtual’ -- in order to bessiinits

ensure it is called.

ClassicalActor : IActor{

ClassicalActor(std::string name) : IActor(name){

}

Practice()
std: :cout <<




Polymorphism
o Not necessarily tied to inheritance

hierarchies
m Functional polymorphism IActor* s = MethodActor (
. . . s->Practice();
(polymorphic function) -- function
overloading >
. . . = Cl icalA
o  Subtyping -- Derive new types in a e e R
hierarchy

m Purpose is to be able to ‘select at
type’ in a hierarchy at run-time.

. . . ¢ $ g++ -std=c++20 polymorphism.cpp -0 prog && ./prog
e i.e.run-time polymorphism [ e R e

ClassicalActor::Practice

18



Functional Programming [wiki]

Programs are made by applying and composing functions

19


https://en.wikipedia.org/wiki/Functional_programming

Basics of Programming - Functional Programming (FP) (1/2)

e Functions
o lambda’s
o Higher-order functions
m Passing functions as arguments to compose computation
o Inputs generate the same outputs
m potential for memoization/caching
m Vvalue semantics -- i.e. data is copied
e \Variables
o Avoiding mutation
m ‘const’ and ‘constexpr’
o Type-safety
m e.g. std::variant (tagged union’ in c++ 17)

e Pattern Matching

20


https://en.cppreference.com/w/cpp/utility/variant

Note: Here a few such features

demonstrated
o  Functions
m lambda’s
m Higher-order functions
e Passing functions as arguments
to compose computation
m Inputs generate the same outputs
e potential for
memoization/caching
e More frequently utilizes value
semantics -- i.e. data is copied
o Variables
m  Avoiding mutation
e ‘const’ and ‘constexpr’

Actor{

Actor(std::string name) : mName(name){}
t std::string mName;

Agenda(std: : function<void ¢ Actor&)> f,

f(a);

t main(){

practice = []( t Actor& s){
std::cout << s.mName <<

dance = [1( Actor& s){
std::cout << s.mName <<

Actor a = Actor(

Agenda(practice, a);
Agenda(dance, a);

t Actor& a){




C++ as a Multi-paradigm language

e Okay -- so you've refreshed on some
different ‘paradigms’ of programming --
specifically in C++

o (Procedural Programming, Object-Oriented
Programming, Functional Programming)

Programming
e You can use some of them as ‘tools’ or
also ‘patterns’

Reactive
o  Think throughout this talk how you might ﬁ ﬁ ﬁ

implement our pattern in different styles https://miro.medium.com/v2/resize:fit:1400/1*FFOmWawwaBGQi4hHE-sn6A.png

Programming
Paradigms

Imperative Declarative

Programming

Object
Oriented

Procedural

22


https://miro.medium.com/v2/resize:fit:1400/1*FFOmWawwaBGQi4hHE-sn6A.png

A Real World Application®

I’m going to be using this game as an
example -- | hope it is not too scary :)

*Disclaimer: | did not work on this project -- | think it serves as an educational use case?


https://mattbrett.com/wp-content/uploads/2014/11/middleearth-shadowofmordor-12.jpg

A real task -- in gaming

e Let's assume | have hired you to work at a video game company

o You’re going to be a contractor/consultant joining the project
o I'm going to ask you to work on extending the gameplay code.

24



- (1/2)

e \Who knows which game
this is?

25



Who knows which game
this is?
o Lord of the Rings -- Shadows
of Mordor! [wiki]

CLIADON/FANORD R

GANE OF THE YEAR EDITION

26


https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor

Game Background

So to give you a little
background, a big part of
the game is combat.

(@)

You’re of course trying to
complete various missions
and battling different types of
enemies based

The game takes place between ‘The Hobbit and ‘Lord of the Rings’ Books for those who want to
know :)

27




Enemies

e Here’s are some example characters that you might encounter and battle

through your journey
o They have different combat strengths, personalities, dialogues, attributes, etc.




Vast number of enemies

e One thing | find fascinating
about this game, is there are
a variety of characters for

which you have to battle.
o To some degree, as previously
mentioned, they have many
different behaviors.

29



Game Development

e If you read through the [wiki],
something interesting is that
development of the project took place
between 2011-2014.

o So you can imagine this is a pretty
significant development time, with hundreds
of thousands or perhaps millions of lines of
code

h

t

tps://upload.wikimedia.org/wikipedia/en/c/cb/Shadow_of Mordor_screenshot.

30


https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor
https://upload.wikimedia.org/wikipedia/en/c/cb/Shadow_of_Mordor_screenshot.jpg

(Aside) Game Development - Nemesis System

e In particular -- the ‘Nemesis System’
for their Artificial Intelligence was quite

advanced for the time

o https://en.wikipedia.org/wiki/Middle-earth: S
hadow of Mordor##fNemesis system

https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of Mordor_Ne

mesis_System.jpg

31


https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor#Nemesis_system
https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor#Nemesis_system
https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of_Mordor_Nemesis_System.jpg
https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of_Mordor_Nemesis_System.jpg

Designing an ‘Enemy’ Class (1/5)

e It's sort of interesting to think about designing an enemy class
o : What attributes do you see that would be part of the class?




e It's sort of interesting to think about designing an enemy class
o  Would it be a class called ‘Enemy’?
o  Would it be derived from something more generic? (e.g. Character)
o  What attributes do we need?
m e.g.lsee‘name’, ‘Power’, rank’, ‘motive’, ‘position in world’




e It's sort of interesting to think about designing an enemy class

o  Would it be a class called ‘Enemy’?
o  Would it be derived from something more generic? (e.g. Character)
o  What attributes do we need?

m e.g.lsee‘name’, ‘Power’, rank’, ‘motive’, ‘position in world’

Motive{};

- Position{
C X, Y,2Z;

orc{

oré(){}

power;
std::string name;
t rank;
Motive m;
Position p;




e Now we can probably improve our ‘orc’ design by making the attributes a little

more flexible over the lifetime of a project.
o Observe we move attributes into a single struct.
o Our ‘data’ becomes trivial easy to understand in the ‘orc’ class
m  We also open up opportunity for the pIMPL idiom for ABI Stability for Orcs

t Motive{}; struct Position{
T X, Y,2Z;5
- Position{

tx,y,z; ict Attributes{

orc{ t Motive{};

oré(){}

t power;

std::string name;
rank;

Motive m;

Position p;

nt power;
std::string name;
1t rank;
Motive m; 1 orc{
Position p;

or&(){}

Attributes attr;



e Just this simple change with the attributes should get you thinking about the

‘trade-offs’ of such design

o Butinterestingly -- what if we could sort of do the same thing with the ‘behaviors’ (i.e. member
functions) of this class.
m Thatis -- to move or ‘extract out’ all or some of the behaviors? -- hold onto that thought!

t Motive{}; struct Position{
T CX,Y.Z;
- Position{

tx,y,z; ict Attributes{

orc{ t Motive{};

oré(){}

t power;
std::string name;

rank;

Motive m;

NL POWEL; Position p;

std::string name;
1t rank;

Motive m; 1 orc{
Position p;

or&(){}

Attributes attr;

main(){




Our ‘Cast’ of Enemies to battle with (1/2)

e Our design problem may
extend further as there are
different ‘Kinds of Orcs’ and
enemies.

e Let's now assume we’ve got

some ‘set’ of enemies here.
o The setis ‘fixed’ (or closed) in
that we know we have 8
‘enemy’ types.

KIﬂdS Of OrCS (> SIGNINTO EDIT

Category page

For distinct variations or types of Orcs appearing in Middle-earth.

Trending pages

Uruk-hai Goblins

Morannon Orcs Moria-orcs Mordor-orcs Morgul Orcs

https://lotr.fandom.com/wiki/Cateqgory:Kinds of Orcs

37


https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

For code illustration -- we'll
focus on 2’ in order to
maximize the code that fits
on a slide.

KIﬂdS Of OrCS (> SIGNINTO EDIT

Category page

For distinct variations or types of Orcs appearing in Middle-earth.

Trending pages

,‘/"-'.
W\

Uruk-hai

Uruks of Mordor Boldog (title)

Morannon Orcs Moria-orcs Mordor-orcs Morgul Orcs

https://lotr.fandom.com/wiki/Cateqgory:Kinds of Orcs

38


https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

What Problem Am | Trying to Solve? (1/2)

Problem:

A. It can be difficult to figure out what
functionality | will need by the end of
the project

Note: It's always worth thinking about these
problems at scale -- assume we have
hundreds of thousands of lines of code,
and that | have been added to the team
mid-project.

KIﬂdS Of OrCS (> SIGNINTO EDIT

Category page

For distinct variations or types of Orcs appearing in Middle-earth.

Trending pages

Morannon Orcs Moria-orcs Mordor-orcs Morgul Orcs

https://lotr.fandom.com/wiki/Cateqgory:Kinds of Orcs

39


https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

We effectively want to design
solutions that are:

A Flexible
A Maintainable
A Extensible

In particular -- today we will
focus on the ‘extensible’ code --
but we’ll observe a pattern that is
quite flexible and maintainable to
some degree as well.

KIﬂdS Of OrCS (> SIGNINTO EDIT

Category page

For distinct variations or types of Orcs appearing in Middle-earth.

Trending pages

Uruk-hai Goblins

Morannon Orcs Moria-orcs Mordor-orcs Morgul Orcs

https://lotr.fandom.com/wiki/Cateqgory:Kinds of Orcs

40


https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

Take a moment to think ('i'g”gsg of Orcs (> sionmoeniT

a bOUt h OW you Wou Id Iay OUt For distinct variations or types of Orcs appearing in Middle-earth.

this hierarchy

o  What do your
objects/functions/etc. look like?

Trending pages

,‘/"-'.
W\

Uruk-hai

Morannon Orcs Moria-orcs Mordor-orcs Morgul Orcs




A First Solution

Did it look something like on the right?

Monster
(Base Class)

\xa .
wA\Y2
A

N

Goblins Mordor-orcs

42



id Sing() =

A First Solution (1/6) o ot

o What dO truct Orc : Monster{

Orc(){
folks think of this? g
o ? P

f Goblin : Monster{

Goblin(){
std::cout

}
Sing() {
std: :cout

£ main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

( t to& m: monsters){
m->Sing();




t Monster{

1 void Sing() =
. What dO f0|kS th'nk truct Orc : Monster{
of this? Orc(;id: :cout
o  We have an interface PP
m  Goblins and Orcs have to Sing() ) Sié"gégui

e We've leaned into some
‘object-oriented tools’ to ensure
functionality is supported by derived

classes (pure virtual function) : *G'b?’bgf{’ : Monster{
oplin

std::cout

by

id Sing() |
std: :cout

t main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

( t auto& m: monsters){
m->Sing();




t Monster{
tual id Sing() =

. What dO f0|kS th'nk truct Orc : Monster{

. Orc(){
of this? a std: :cout
}

I Sing() |
std::cout

f Goblin : Monster{

: L Gobli
o We could have each class do different things if e

needed. }
- i id sing() {
m i.e. add more member functions et

t main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

( t auto& m: monsters){
m->Sing();




t Monster{
tual id Sing() =

° : What do folks think benit Dbe: 5 Norsteri

. Orc(){
of this? a std::cout <<
}

I Sing() |
std::cout <<

f Goblin : Monster{

Goblin(){
std::cout <<

id sing() {
: T , - std::cout <<
o  The member functions are somewhat ‘piling up’ into

one single class.
m  We did have to repeat some code (DRY int main(){
Principle -- Don’t Repeat Yourself)
std::vector<Monster*> monsters;

’////,/:;777 monsters.emplace_back( ore):;
monsters.emplace_back( Goblin);

Note: This is a bit e

. ( uto& m: monsters){
troublesome -- especially m->Sing():
if Goblin, Orc, etc. are
spread across different
files




: What do folks think
of this?

o  What about our ‘loop’ at line 37-397?
m  What if not all Orc’s or Goblin’s otherwise did
not have a Sing function?
e Perhaps different Monsters in this
hierarchy have different abilities.
e (Could dynamic_cast to check)

t Monster{
tual id Sing() =

t Orc : Monster{

‘brc(){

std::cout <<
} .

I Sing() {

std::cout

f Goblin : Monster{

Goblin(){
std::cout

}
id Sing() |
std: :cout

t main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

uto& m: monsters){
m->Sing();




O

| want to maintain the inheritance hierarchy

That is appropriate -- Orc’s and
Goblins are a ‘type of’ Monster
e (is-a relationship)

I’'m looking for a way to ‘extend’ this class --
again think at scale

A game project over the course of
3-years, we may not be able to predict
all behaviors.
Late in the project, we may need to
add functionality, and we may want to
avoid adding bugs

e There are some better defined

solutions for this that may help.

iIct Monster{

id Sing() =

ct Orc : Monster{
Orc(){

std::cout <<
}

I Sing() |

std::cout

f Goblin : Monster{

Goblin(){

std::cout

by

Sing() {
std: :cout

£ main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

( t to& m: monsters){
m->Sing();




Design Pattern Goal(s) for today



What you're going to learn today

e \What design patterns are
e One behavioral design patterns
specifically:
o Visitor Pattern
e This is not an ‘expert-level’ talk, but
aimed more at
beginners/intermediate
o That said, | hope experts will derive some
value for looking at today’s pattern.
m Or otherwise, be able to refresh and

point out some tradeoffs with
today’s pattern .. (=

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.j

50


https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

Design Patterns
with C++

B

Design Patterns

‘templates’ or ‘flexible blueprints’ for developing software.

Patterns




Design Patterns Book

e In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

o It had four authors, and is dubbed the “Gang of Four” book (GoF).

o The book is popular enough to have it's own wikipedia page:
https://en.wikipedia.org/wiki/Design_Patterns

o C++ code samples included, but can be applied in many
languages.

o This book is a good starting point on design patterns for
object-oriented programming

1. % )- v 1
Desion Patterns
Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm

Ralph Johnson
John Vlissides

oy

~
>
(=)
=,
g
A
O
z
-
=
=
4
<
=
-4
=
m
o
=
Z
z
Q
z
o
=]
Z
(3]
)
™
=
m
w

52


https://en.wikipedia.org/wiki/Design_Patterns

* Brief Aside *

| really enjoyed this book (as a graphics programmer) for
learning design patterns.
o There's a free web version here:

https://gameprogrammingpatterns.com/
o | also bought a physical copy to keep on my desk

o (I'am not commissioned to tell you this :))

Patterns

Robert Nystrom

53


https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

What is a Design Pattern?

e A common repeatable solution for solving problems.
o Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing software.

e Design patterns can help make programs more:
Flexible

Maintainable

Extensible

(A good pattern helps satisfy these criteria)

O O O O

54



Design Patterns
Book (1/2)

e So design patterns are reusable
templates that can help us solve

problems that occur in software

o  One (of the many) nice thing the
Design Patterns Gang of Four

(GoF) book does is organize the
23* presented design patterns into
three categories:

m Creational

m  Structural

m Behavioral




Design Patterns

Elements of Reusable

Object-Oriented Software
=

oY

\

Momento

[}

saving state
of iteration
N |
— avoiding .
composites . N
enumerating \
acding children Ng
responsibilities --\y"__-ﬁgir:posed \\
toobiects T\ it A 9 N ' Command |
Composite [« — o
e - \ T
composites efining ining
Decorator po \\\ s Fodirk
adding ) Sy
Flyweight operation: =
changing skin defining m
versus guts S grammer
// .
sharing addmg
strategies/ Interpreter —operations
o068} sharing - | Chain of Responsibility '
sharing terminal
states symbols complex
dependancy

rnanagement’\

‘defining
algorithm’s [ ——
steps - Template Method | i i
N
Prototype Ic\ S P

*Keep in mind there are more than 23 design patterns in the world

Today we are focusing on behavior of objects

I've highlighted the 11 behavioral patterns.

L

Design pattern relationships



Design Pattern Categories

There are ‘3’ categories of design patterns

1. Creational

o Provide program more flexibility on how to create objects, often avoiding
direct instantiation of a specific object.

2. Structural

o Focus on using inheritance to compose interfaces and define objects in a
way to create new functionality.

3. Behavioral
o Focuses on how to communicate between objects

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type



https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Behavioral Design Patterns (1/2)

e “Most of these design patterns are specifically concerned with col
between objects.” [wiki]

Behavioral [edit]

Most of these design patterns are specifically concerned with communication between objects.

« Chain of responsibility delegates commands to a chain of processing objects.
« Command creates objects that encapsulate actions and parameters.

Creational |edit)

Main article: Creational pattern

Creational patterns are ones that create

Abstract factory groups object facto
Builder constructs complex objects

Factory method creates objects witl
Prototype creates objects by cloning
Singleton restricts object creation fa

Structural | edit]

These concern class and object compo

Adapter allows classes with incomp
Bridge decouples an abstraction fro
Composite composes zero-or-more
Decorator dynamically adds/overrid
Facade provides a simplified interfa
Flyweight reduces the cost of creati
Proxy provides a placeholder for an

« Interpreter implements a specialized language.
« |terator accesses the elements of an object sequentially without exposing its underlying representation.
» Mediator allows loose coupling between classes by being the only class that has detailed knowledge of their methods.

* Memento provides the ability to restore an object to its previous state (undo).

« Observer is a publish/subscribe pattern, which allows a number of observer objects to see an event.

« State allows an object to alter its behavior when its internal state changes.

« Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.

« Template method defines the skeleton of an algorithm as an abstract class, allowing its subclasses to provide concrete behavior.
« Visitor separates an algorithm from an object structure by moving the hierarchy of methods into one object.

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type

Behavioral |edit]

Most of these design patterns are spe

Chain of responsibility delegates ¢
Command creates objects which e
Interpreter implements a specializ
lterator accesses the elements of

Mediator allows loose coupling be
Memento provides the ability to re
Observer is a publish/subscribe pa
State allows an object to alter its
Strategy allows one of a family of
Template method defines the ske
Visitor separates an algorithm fro



https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The specific

Behavioral [edit]

attern we’ll
Most of these design patterns are specifically concerned with communication between object p
« Chain of responsibility delegates commands to a chain of processing objects. I O O k at t O d ay

« Command creates objects that encapsulate actions and parameters.
« Interpreter implements a specialized language.

« |terator accesses the elements of an object sequentially without exposing its underlying represeg
« Mediator allows loose coupling between classes by being the only class that has detailed kngl##tje of their methods.
* Memento provides the ability to restore an object to its previous state (undo).
« Observer is a publish/subscribe pattern, which allows a number of observer objects to see an event.
« State allows an object to alter its behavior when its internal state changes.

« Strategy allows one of a family of algorithms to be selected on-the-fly at runtime.

« Template method defines the skeleton of an algorithm as an abstract class, allowing its subclasses to provide concrete behavior.
» Visitor separates an algorithm from an object structure by moving the hierarchy of methods into one object.

https://en.wikipedia.ora/wiki/Design_Patterns#Patterns_by_type



https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The Visitor Design Pattern

A Behavioral Design Pattern

60



Behavior Design Patterns

e Focus on communication between objects

61



The Visitor Design Pattern [wiki]

e Focus on communication between objects

Definition |edit]

The Gang of Four defines the Visitor as:

Represent[ing] an operation to be performed on elements of an object structure. Visitor lets you define a new
operation without changing the classes of the elements on which it operates.

The nature of the Visitor makes it an ideal pattern to plug into public APIs, thus allowing its clients to perform operations on a

class using a "visiting" class without having to modify the source.?]

62



https://en.wikipedia.org/wiki/Visitor_pattern

Resuming our game project...

63



Review of our First Solution

e Let's now apply the visitor pattern to

our solution
o In a similar way -- recall previously how we
moved all the ‘attributes’ to its own struct,
we’re going to move all the member
functions to a new class.

iIct Monster{

id Sing() =

ct Orc : Monster{
Orc(){

std::cout <<
}

I Sing() |

std::cout

f Goblin : Monster{

“Goblin(){

std::cout

by

Sing() {
std: :cout

£ main(){

std::vector<Monster*> monsters;
monsters.emplace_back( orec):
monsters.emplace_back( Goblin);

( t to& m: monsters){
m->Sing();




(Aside) UML Diagram of Visitor Pattern

From the wikipedia
you can see a ‘UML’
diagram of the Visitor

pattern
o To be honest -- | think
it's better if we build
this up slowly with
our problem rather
than stare at this too
long

UML class and sequence diagram [edit]

Client

Element

—>

accept(visitor)

visitor.

ElementB

accept(visitor)
operationB()

ElementA

accept|visitor)
operationAl)

g

i)

visitElementA [this) T

visitor Visitor
visitElementA fe)

{ visitElementB(e)

————

A

Client

.Elemem.T‘ :ElementB
L

visitor
Misitorl

Visitor1

vistElementA (e)
vistElementBie)

|

accept(visitor] |
e

[}
lvistElementA this) |

}
_ operationAll |
o T

:accepuvisnoﬂ

|
|
|
}
.|
=

visitElementB (this)

A sample UML class diagram and sequence diagram for the Visitor design pattern.[]

operationB()

https://en.wikipedia.org/wiki/Visitor_pattern

65



https://en.wikipedia.org/wiki/Visitor_pattern

Visitor Pattern - Extending Behaviors

So here’s our current hierarchy in our

current solution

Monster{
i id Sing() = 0;

orc : Monster{
Orc(){
std::cout <<
}

id sing() {
std::cout <<

}

Goblin : Monster{
Goblin(){
std::cout <<
}
i Sing() {
std::cout <<

o1

i main(){

std::vector<Monster*> monsters
monsters.emplace_back( Orc)
monsters.emplace_back( Goblin);

(
}

const to& m: monsters){
m->Sing();

Monster
(Base Class)

Goblins

Mordor-orcs

Sing()

Sing()

66




Visitor Pattern - Extending Behaviors

e Now part of our solution is going to be to

add a ‘MonsterVisitor’ class
o The purpose of this ‘abstract class’ is to hold
behaviors (i.e. functions)
o Thus we will avoid creating more member functions
within the ‘Orc’ and ‘Goblin’ concrete classes -- new
behaviors go in the ‘Monster Visitor’)

| ~MonsterVisitor() =

id visit(const& Orc)
id visit(const& Goblin)

MonsterVisitor
(Base Class)

Monster
(Base Class)

Goblins

Mordor-orcs

Sing()

Sing()

67




Visitor Pattern (1/8)

Any classes derived
from ‘MonsterVisitor’
will be the functional
equivalent to adding a
'Sing()’ member
function.

MonsterVisitor
Base Class

MonsterVisitor {

~Monster rvisitor [9)

DrawMonsterVisitor

Monster
(Base Class)

FightMonsterVisitor

Goblins

Mordor-orcs

Sing()

Sing()

68




Monster Interface
‘connects’ to the ‘visitor
classes’, by
implementing an
‘accept’ member
function.

MonsterVisitor

Bse Class

Mons t:

DrawMonsterVisitor

Monster{

accept( MonsterVisitor&) = 0;

Monster
(Base Class)

Goblins Mordor-orcs

FightMonsterVisitor

Sing() Sing()

69




Monster
—_——— (Base Class)

Monster{
accept( MonsterVisitor&) = 0;

MonsterVisitor
Base Class —_———

e Monsters ‘connect’ to
the ‘visitor classes’, by

implementing an —_—
1 )
accept’ member
function.
DrawMonsterVisitor
Goblins Mordor-orcs
FlghtMonSterVISItor accept(MonsterVisitor) accept (MonsterVisitor)

70




Can be read as ‘I
accept some
functionality from the
‘MonsterVisitor’
hierarchy

Monster
(Base Class)

Monster{

MonsterVisitor
Bas Class -

MonsterVisitor{
~MonsterVisitor() =
s1

& Orc)
visit( & Goblin)

P——
——
DrawMonsterVisitor
Goblins Mordor-orcs
FightMonsterVisitor -
accept(MonsterVisitor) eeepitlbnsiervisiion,

id accept(
std::cout <<
visitor.visi

accept( MonsterVisitor&) = 0;



struct DrawMonsterVisitor

e Important Observation
o per-behavior that we
add (e.qg.
DrawMonsterVisitor)
o | needtoadd one
member function for
every class in the

‘Monster’ hierarchy (i.e.

Goblins, Orcs, etc.)

MonsterVisitor{
oid visit(const Orc& orc) const override{
std::cout <<

void visit(co
std::cout <<

|

Goblin& goblin) con

MonsterVisitor
Base Class

DrawMonsterVisitor

Monster
(Base Class)

Monster{
accept(

Goblins

FightMonsterVisitor

Mordor-orcs

accept(MonsterVisitor)

accept(MonsterVisitor)

truct Orc :

orc(){

Monster{

std::cout <<

}

id accept(
std::cout <<

t MonsterVisitor& visitor)

visitor.visit(* »

MonsterVisitor&) = 0;



MonsterVisitor Monster
Base Class —_———— - —— (Base Class)

Monster{
accept( MonsterVisitor&) = 0;

e Important Observation

o per-behavior that we
add (e.g.

DrawMonsterVisitor) .
o | need to add one .

member function for

every class in the DrawMonsterVisitor

‘Monster’ hierarchy (i.e.

Goblins, Orcs, etc.)

Goblins Mordor-orcs
FightMonsterVisitor socept (Honstervisiton) B T

t DrawMonsterVisitor : MonsterVisitor{
id visit(const Orc& orc) e e
std::cout <<

}

t t Orc : Monster{
orc(){
std::cout <<

}

id visit(const Goblin& goblin)
std::cout <<

b

id accept( t MonsterVisitor& visitor)
std::cout << H
visitor.visit(* »




MonsterVisitor Monster
Base Class —_———— - —— (Base Class)

Monster{
accept( MonsterVisitor&) = 0;

Open -Closed Principle
One property we can
observe visually is the
Open-Closed Principle

o  This means we can ‘add r—
new operations to existing
object (open), without
modifying the structure
(closed -- Monster is not

changed) DrawMonsterVisitor

The algorithm (i.e.
behavior) is thus separated
from the object

Goblins Mordor-orcs

o Thisis a ‘good thing’ if our FiahtMonsterVisit
[P’ . ’ | onstervisitor .
goa! is ‘extensible’ software 9 accept(MonsterVisitor) accept(MonsterVisitor)
esign.
o Asyou canimagine, we can | ST A
try out many different new b BN
‘MonsterVisitors’ to try , SRS '

different behaviors. ; i siéf?g;fjt <(' Monstervisitoril\ visitor) «

visitor.visit(* »




Note: However (from
previous slide) -- we
probably want to make
sure we are not adding
lots of different objects
to the ‘Monster

hierarchy’

o Remember, we have to
implement (or remove)
functionality for each
object in our hierarchy --
so hopefully it is
relatively stable :)

MonsterVisitor
Base Class

lonsterV.

DrawMonsterVisitor

id visit(con
std::cout <<

Monster
(Base Class)

Monster{

accept( MonsterVisitor&) = 0;

Goblins

FightMonsterVisitor

Mordor-orcs

accept(MonsterVisitor)

Goblin& goblin) ]

accept(MonsterVisitor)




Live Code Review

ict Ore;
t Goblin;

e Full Code Review
e (Do ask questions at any point) “ruct Monstervisitor{

~MonsterVisitor() =

visit( & 0Orc)
visit( t& Goblin)

t Monster{

4 accept( t MonsterVisitor&) =

[ OrE Monster{
Orc(){

std::cout <<
}

accept( t MonsterVisitor& visitor)
std::cout << ;
visitor.visit(* )




(From Code Review) ‘Visitor Classes’

e Again, here’s where the functionality is
extended (top-right)

e Here is an example usage on a
collection (Bottom-right)

e Here is an example usage on a single
object (Bottom-left)

Monster* myGoblin = Goblin;
FightMonsterVisitor fmv;

myGoblin->accept(fmv);

DrawMonsterVisitor : MonsterVisitor{
id visit( t Orc& orc) t ide{
std::cout <<

sid visit(const Goblin& goblin)

std::cout <<

t FightMonsterVisitor: MonsterVisitor{

visit( Orc& orc) erride{
std::cout <<

visit( t Goblin& goblin)
std::cout <<

drawAllMonsters(std: :vector<Monster*> & monsters){

( & m : monsters){
m->accept(DrawMonsterVisitor{});

fightAllMonsters(std: :vector<Monster*> & monsters){
(aut nst& m : monsters){
m->accept(FightMonsterVisitor{});

77



Design Pattern Summary



Pros
o 77
Neutral
o 77

Cons
o 77

. Trade-offs (1/2)

79



Pros

o Observes Open-Closed Principle (Easy to extend behaviors)
o Implementation details are isolated from class

Neutral
o When we do have to repeat our code, at least it is in same struct/class.
m Pure virtual functions also can ensure all classes get updated

Cons
o Potentially makes it harder to introduce new types later in a project -- need to do lots of
potential implementation
o Restricted to the public interface (or otherwise need to use getters to expose data)
o Performance may be negatively affected
m Lots of ‘polymorphism’ (double dispatch)
m Potentially more ‘heap allocations’ and memory management needed.

80



Bonus if Time



std::visit and std::variant

t MethodActor{

MethodActor() = H
MethodActor(std::string name) : mName(name){}
t std::string mName;

e Now that we know about the visitor pattern
-- we can actually make use of some tools public: -~ |

in the C++ Standard Library  Const stdssstring miane; © o) U

o This is a more ‘functional style’ in some ways of

thinking about the problem.
o We're going to use a std: :variant, and

t ClassicalActor{

Actor = std::variant<MethodActor, ClassicalActor>;

t PracticeVisitor{

implement (sort of like pattern matching) an O i) e ST
‘ H ) H }
operator to ‘dispatch’ on for each type in the () (const ClassicalActors a)

std::cout <<

std::variant. ; }
e See [Church Encoding] S RaEA

Actor a = MethodActor( )
std::visit(PracticeVisitor{}, a);

Actor b = ClassicalActor( )is
std::visit(PracticeVisitor{}, b);



https://en.wikipedia.org/wiki/Church_encoding

Some High Level Takeaways

e \We started with ‘programming paradigms’
o That may have been a weird place to start -- but hopefully there is some observation about
moving around ‘data’ and ‘behaviors’
m Each paradigm puts an emphasis on slightly different areas.
e \We looked at a ‘real world problem’
o Inthe sense that we’re ‘managing complexity’ in a system that may contain many objects and
data types
e The Visitor Pattern can help manage complexity when new behaviors need to

be added

o There may be alternatives -- we may need to look at other paradigms (e.g. data-oriented in the
gaming space) to otherwise think about how we process data.

e Overall -- the Visitor is a good exercise in understanding how flexible software
creation can be, and the trade-offs that come with it

83



Further resources and training materials

e More patterns (and soon this one)
added here:
https://www.youtube.com/playlist?list
=PLvv0ScY6vfdOwBfIFOfeynIDQuaeK

Yzyc
o Slides from this talk will be added to my
website shortly.

Patterns

Patterns

Patterns

Patterns

Patterns

134:31

129:09

121:11

113:36

117:51

117:59

Design Patterns - Command Pattern Explanation and Implementation in C++

Mike Shah + 12K views * 2 years ago

Design Patterns - Singleton Pattern | Explanation and Implementation in C++

Mike Shah + 4.4K views * 2 years ago

Design Patterns - Factory Method Pattern Explanation and Implementation in C++

Mike Shah + 5.6K views * 2 years ago

Design Patterns - Factory Method Pattern Adding More Power to Count Allocated Objects
in C++

Mike Shah + 1.7K views * 2 years ago

Design Patterns - The Extensible Factory Pattern in C++ | Register Objects at Runtime

Mike Shah + 2K views * 2 years ago

Design Patterns - Iterator Pattern Explanation and usage with STL in C++

Mike Shah + 1.6K views * 2 years ago

The Observer Design Pattern in C++ - Part 1 of n - A simple implementation

Mike Shah + 3.8K views * 11 months ago

The Observer Design Pattern in C++ - Part 2 of n - Extensibility and Abstraction

Mike Shah + 1.7K views + 11 months ago



https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

>k sl oI
Mike Shah

17:30 - 19:00 Thur, January 4, 2024

~90 minutes | Introductory Audience

Thank you College of Farabi University of

Tehran and the Computer Engineering
Scientific Association

Thinking about
with

with Mike Shah

Social: @MichaelShah
Web : mshah.io
Courses: courses.mshah.io

3 YouTube

www .voutube.com/c/MikeShah



https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!



Empty Slide



