
Attribution/License

● Original Materials developed by Mike Shah, Ph.D. (www.mshah.io)
● This slideset and associated source code may not be distributed

without prior written notice

1

Please do not redistribute slides/source without
prior written permission.

http://www.mshah.io

Thinking about
Design with Patterns

Visitor Pattern -- in C++
with Mike Shah

17:30 - 19:00 Thur, January 4, 2024

~60-90 minutes | Introductory
Audience 2

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thinking about
Design with Patterns

Visitor Pattern -- in C++
with Mike Shah

17:30 - 19:00 Thur, January 4, 2024

~60-90 minutes | Introductory
Audience 3

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah

Originally, I was going to give a pretty ‘cookie cutter’ talk on design patterns
-- and to some extent that holds.
However -- as I looked at some design patterns, I decided some of those
patterns had more interesting trade-offs.

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

One of the Best Titled Talks

● (The talk is also excellent)
● But the part I want you to focus on is

-- ‘The Minds of People’
○ That’s you -- the students, engineers,

faculty, today
○ So anything I think about, any design

choice we make, is something that we
need to think about.

■ Software engineering is about
making trade-offs, and engineering
requires critical thinking applied to
specific domains.

4

Link on YouTube:
https://www.youtube.com/watch?v=FJJTYQYB1JQ

https://www.youtube.com/watch?v=FJJTYQYB1JQ

Your Tour Guide for Today
by Mike Shah

● Associate Teaching Professor at Northeastern University
in Boston, Massachusetts.

○ I love teaching: courses in computer systems, computer graphics,
geometry, and game engine development.

○ My research is divided into computer graphics (geometry) and
software engineering (software analysis and visualization tools).

● I do consulting and technical training on modern C++,
DLang, Concurrency, OpenGL, and Vulkan projects

○ Usually graphics or games related -- e.g. Building 3D application
plugins

● Outside of work: guitar, running/weights, traveling and
cooking are fun to talk about

5

Web
www.mshah.io

https://www.youtube.com/c/MikeShah
Non-Academic Courses
courses.mshah.io

http://www.mshah.io
https://www.youtube.com/c/MikeShah
http://courses.mshah.io

Code for the talk

● Located here:
https://github.com/MikeShah/Talks/tree/main/2024/College_of_Farabi_University_
of_Tehran

6

https://github.com/MikeShah/Talks/tree/main/2024/College_of_Farabi_University_of_Tehran
https://github.com/MikeShah/Talks/tree/main/2024/College_of_Farabi_University_of_Tehran

Abstract

Today I am going to be providing an introduction to design patterns, and going into depth on a
useful behavioral design patterns--the Visitor Pattern.

The proper use of design patterns can greatly simplify your codebase, making your software more
flexible, maintainable, and extensible.

We will also look at examples of code in open source projects to understand otherwise how these
patterns are deployed.

Students will leave this talk with the knowledge to go forward and implement the both the state and
the visitor pattern at a minimum, and otherwise have a better idea of when either of these patterns
may provide the right trade-off in your during software development.

The abstract that you read and enticed
you to join me is here!

7

Quick Review of Programming Paradigms
Establishing common ground -- minimum skills needed to proceed forward

8

C++ as a Multi-paradigm language

● One of the great advantages of a language like C++ (and many
others -- e.g. Java, DLang, etc.) is that you can use multiple
programming paradigms.

○ This allows us to think about programming in different ways to solve
different problems.

● Likely you have learned (or will one day learn) one of these
three programming styles:

○ Procedural Programming
○ Object-Oriented Programming
○ Functional Programming
○ (Of course other paradigms exist: Generic, Data-Oriented, structured, etc.)

● Very briefly, I want to discuss a few features of each paradigm
which are used in each

○ In some ways -- you can think of each paradigm as a ‘design pattern’ as
well for how you approach computation.

9

https://www.stroustrup.com/

https://www.stroustrup.com/

Procedural Programming [wiki]
A series of computational steps carried out by functions (i.e. procedures)

10

https://en.wikipedia.org/wiki/Procedural_programming

Basics of Programming - Procedural Style (1/2)

● Procedural Style programming
○ functions

■ Input of zero or one arguments to produce zero or more values
○ Languages also support structured data

■ e.g. ‘struct’
■ e.g. ‘union’
■ e.g. enum and enum class
■ e.g. arrays

○ if/else if/else conditional statements
○ switch statements

■ What’s the advantage of a switch-statement versus an if-else statement?

11

Basics of Programming - Procedural Style (2/2)

● Example with enums (top-right, bottom-right)

○ Allow us to ‘switch’ on data
○ In object-oriented programming we instead

use ‘polymorphism’ (coming up)
○ (Bottom-left) An example of ‘events’ that we

might want to further store in an enum
■ Uses a ’union’ of ‘structs’ to hold

data.

12

Object-Oriented Programming [wiki]
Objects (containing data+code) are main mechanism of computation

13

https://en.wikipedia.org/wiki/Object-oriented_programming

Basics of Programming - Object-Oriented Programming (OOP) (1/5)

● A common description of Object-Oriented language features would likely
include the terms:

○ Encapsulation
■ Associate data (attributes) and behaviors (functions) together

● This is how we create ‘objects’
● Thus -- Abstraction (Objects and Classes)

○ Other ways of managing state involve -- Information hiding (public/private)
○ Inheritance

■ Ability to derive new types with a ‘is-a’ relationship
■ Can use an ‘interface’ to derive new types.

○ Polymorphism
■ Not necessarily tied to inheritance hierarchies

● Functional polymorphism (polymorphic function) -- function overloading
■ Subtyping -- Derive new types in a hierarchy

14

Basics of Programming - Object-Oriented Programming (OOP) (2/5)

● Encapsulation
○ Associate data (attributes) and behaviors

(functions) together
■ This is how we create ‘objects’
■ Thus -- Abstraction (Objects and

Classes)
● Other ways of managing state

involve -- Information hiding
(public/private)

15

Basics of Programming - Object-Oriented Programming (OOP) (3/5)

● Inheritance
○ Ability to derive new types with a ‘is-a’

relationship
○ Can use an ‘interface’ to derive new types.

16

Basics of Programming - Object-Oriented Programming (OOP) (4/5)

● Inheritance
○ Ability to derive new types with a ‘is-a’

relationship
○ Can use an ‘interface’ to derive new types.

■ Note: A function that is ‘virtual’ can
provide a default implementation.

■ Note: A function that is ‘purely virtual’
must provide an implementation

■ Note: The ‘destructor’ of a base class
should be marked ‘virtual’ -- in order to
ensure it is called.

17

Basics of Programming - Object-Oriented Programming (OOP) (5/5)

● Polymorphism
○ Not necessarily tied to inheritance

hierarchies
■ Functional polymorphism

(polymorphic function) -- function
overloading

○ Subtyping -- Derive new types in a
hierarchy

■ Purpose is to be able to ‘select at
type’ in a hierarchy at run-time.

● i.e. run-time polymorphism

18

Functional Programming [wiki]
Programs are made by applying and composing functions

19

https://en.wikipedia.org/wiki/Functional_programming

Basics of Programming - Functional Programming (FP) (1/2)

● Functions
○ lambda’s
○ Higher-order functions

■ Passing functions as arguments to compose computation
○ Inputs generate the same outputs

■ potential for memoization/caching
■ value semantics -- i.e. data is copied

● Variables
○ Avoiding mutation

■ ‘const’ and ‘constexpr’
○ Type-safety

■ e.g. std::variant (‘tagged union’ in c++ 17)
● Pattern Matching

20

https://en.cppreference.com/w/cpp/utility/variant

Basics of Programming - Functional Programming (FP) (2/2)

● Note: Here a few such features
demonstrated

○ Functions
■ lambda’s
■ Higher-order functions

● Passing functions as arguments
to compose computation

■ Inputs generate the same outputs
● potential for

memoization/caching
● More frequently utilizes value

semantics -- i.e. data is copied
○ Variables

■ Avoiding mutation
● ‘const’ and ‘constexpr’

21

C++ as a Multi-paradigm language

● Okay -- so you’ve refreshed on some
different ‘paradigms’ of programming --
specifically in C++

○ (Procedural Programming, Object-Oriented
Programming, Functional Programming)

● You can use some of them as ‘tools’ or
also ‘patterns’

○ Think throughout this talk how you might
implement our pattern in different styles

22

https://miro.medium.com/v2/resize:fit:1400/1*FFOmWawwaBGQi4hHE-sn6A.png

https://miro.medium.com/v2/resize:fit:1400/1*FFOmWawwaBGQi4hHE-sn6A.png

A Real World Application*

23

https://mattbrett.com/wp-content/uploads/2014/11/middleearth-shadowofmordor-12.jpg

I’m going to be using this game as an
example -- I hope it is not too scary :)

*Disclaimer: I did not work on this project -- I think it serves as an educational use case!

https://mattbrett.com/wp-content/uploads/2014/11/middleearth-shadowofmordor-12.jpg

A real task -- in gaming

24

● Let’s assume I have hired you to work at a video game company
○ You’re going to be a contractor/consultant joining the project
○ I’m going to ask you to work on extending the gameplay code.

Question to Audience: (1/2)

● Who knows which game
this is?

25

Question to Audience: (2/2)

● Who knows which game
this is?

○ Lord of the Rings -- Shadows
of Mordor! [wiki]

26

https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor

Game Background

● So to give you a little
background, a big part of
the game is combat.

○ You’re of course trying to
complete various missions
and battling different types of
enemies based

27

The game takes place between ‘The Hobbit’ and ‘Lord of the Rings’ Books for those who want to
know :)

Enemies

● Here’s are some example characters that you might encounter and battle
through your journey

○ They have different combat strengths, personalities, dialogues, attributes, etc.

28

Vast number of enemies

● One thing I find fascinating
about this game, is there are
a variety of characters for
which you have to battle.

○ To some degree, as previously
mentioned, they have many
different behaviors.

29

Game Development

● If you read through the [wiki],
something interesting is that
development of the project took place
between 2011-2014.

○ So you can imagine this is a pretty
significant development time, with hundreds
of thousands or perhaps millions of lines of
code

30

https://upload.wikimedia.org/wikipedia/en/c/cb/Shadow_of_Mordor_screenshot.jpg

https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor
https://upload.wikimedia.org/wikipedia/en/c/cb/Shadow_of_Mordor_screenshot.jpg

(Aside) Game Development - Nemesis System

● In particular -- the ‘Nemesis System’
for their Artificial Intelligence was quite
advanced for the time

○ https://en.wikipedia.org/wiki/Middle-earth:_S
hadow_of_Mordor#Nemesis_system

31

https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of_Mordor_Ne
mesis_System.jpg

https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor#Nemesis_system
https://en.wikipedia.org/wiki/Middle-earth:_Shadow_of_Mordor#Nemesis_system
https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of_Mordor_Nemesis_System.jpg
https://upload.wikimedia.org/wikipedia/en/6/61/Middle-Earth_Shadow_of_Mordor_Nemesis_System.jpg

Designing an ‘Enemy’ Class (1/5)

● It’s sort of interesting to think about designing an enemy class
○ Question to Audience: What attributes do you see that would be part of the class?

32

Designing an ‘Enemy’ Class (2/5)

● It’s sort of interesting to think about designing an enemy class
○ Would it be a class called ‘Enemy’?
○ Would it be derived from something more generic? (e.g. Character)
○ What attributes do we need?

■ e.g. I see ‘name’, ‘Power’, ‘rank’, ‘motive’, ‘position in world’

33

Designing an ‘Enemy’ Class (3/5)

● It’s sort of interesting to think about designing an enemy class
○ Would it be a class called ‘Enemy’?
○ Would it be derived from something more generic? (e.g. Character)
○ What attributes do we need?

■ e.g. I see ‘name’, ‘Power’, ‘rank’, ‘motive’, ‘position in world’

34

Designing an ‘Enemy’ Class (4/5)

● Now we can probably improve our ‘orc’ design by making the attributes a little
more flexible over the lifetime of a project.

○ Observe we move attributes into a single struct.
○ Our ‘data’ becomes trivial easy to understand in the ‘orc’ class

■ We also open up opportunity for the pIMPL idiom for ABI Stability for Orcs

35

Designing an ‘Enemy’ Class (5/5)

● Just this simple change with the attributes should get you thinking about the
‘trade-offs’ of such design

○ But interestingly -- what if we could sort of do the same thing with the ‘behaviors’ (i.e. member
functions) of this class.

■ That is -- to move or ‘extract out’ all or some of the behaviors? -- hold onto that thought!

36

Our ‘Cast’ of Enemies to battle with (1/2)

● Our design problem may
extend further as there are
different ‘Kinds of Orcs’ and
enemies.

● Let’s now assume we’ve got
some ‘set’ of enemies here.

○ The set is ‘fixed’ (or closed) in
that we know we have 8
‘enemy’ types.

37https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

Our ‘Cast’ of Enemies to battle with (2/2)

● Our design problem may
extend further as there are
different ‘Kinds of Orcs’ and
enemies.

● Let’s now assume we’ve got
some ‘set’ of enemies here.

○ The set is ‘fixed’ (or closed) in
that we know we have 8
‘enemy’ types.

● For code illustration -- we’ll
focus on ‘2’ in order to
maximize the code that fits
on a slide.

38https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

What Problem Am I Trying to Solve? (1/2)

Problem: I may not know all of the
behaviors that I want for these objects --
especially if they are in the same
hierarchy

A. It can be difficult to figure out what
functionality I will need by the end of
the project

Note: It’s always worth thinking about these
problems at scale -- assume we have
hundreds of thousands of lines of code,
and that I have been added to the team
mid-project.

39https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

What Problem Am I Trying to Solve? (2/2)

We effectively want to design
solutions that are:

❏ Flexible
❏ Maintainable
❏ Extensible

In particular -- today we will
focus on the ‘extensible’ code --
but we’ll observe a pattern that is
quite flexible and maintainable to
some degree as well.

40https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

https://lotr.fandom.com/wiki/Category:Kinds_of_Orcs

Audience Exercise:

● Take a moment to think
about how you would lay out
this hierarchy

○ What do your
objects/functions/etc. look like?

41

A First Solution
Did it look something like on the right?

42

Monster
(Base Class)

A First Solution (1/6)

43

● Question to the Audience: What do
folks think of this?

○ ?

A First Solution (2/6)

44

● Question to the Audience: What do folks think
of this?

○ We have an interface
■ Goblins and Orcs have to Sing()

● We’ve leaned into some
‘object-oriented tools’ to ensure
functionality is supported by derived
classes (pure virtual function)

○ We could have each class do different things if
needed.

■ i.e. add more member functions
○ The member functions are somewhat ‘piling up’ into

one single class.
■ We did have to repeat some code (DRY

Principle -- Don’t Repeat Yourself)
○ What about our ‘loop’ at line 37-39?

■ What if not all Orc’s or Goblin’s otherwise did
not have a Sing function?

● Perhaps different Monsters in this
hierarchy have different abilities.

● (Could dynamic_cast to check)

A First Solution (3/6)

45

● Question to the Audience: What do folks think
of this?

○ We have an interface
■ Goblins and Orcs have to Sing()

● We’ve leaned into some
‘object-oriented tools’ to ensure
functionality is supported by derived
classes (pure virtual function)

○ We could have each class do different things if
needed.

■ i.e. add more member functions
○ The member functions are somewhat ‘piling up’ into

one single class.
■ We did have to repeat some code (DRY

Principle -- Don’t Repeat Yourself)
○ What about our ‘loop’ at line 37-39?

■ What if not all Orc’s or Goblin’s otherwise did
not have a Sing function?

● Perhaps different Monsters in this
hierarchy have different abilities.

● (Could dynamic_cast to check)

A First Solution (4/6)

46

● Question to the Audience: What do folks think
of this?

○ We have an interface
■ Goblins and Orcs have to Sing()

● We’ve leaned into some
‘object-oriented tools’ to ensure
functionality is supported by derived
classes (pure virtual function)

○ We could have each class do different things if
needed.

■ i.e. add more member functions
○ The member functions are somewhat ‘piling up’ into

one single class.
■ We did have to repeat some code (DRY

Principle -- Don’t Repeat Yourself)
○ What about our ‘loop’ at line 37-39?

■ What if not all Orc’s or Goblin’s otherwise did
not have a Sing function?

● Perhaps different Monsters in this
hierarchy have different abilities.

● (Could dynamic_cast to check)

Note: This is a bit
troublesome -- especially
if Goblin, Orc, etc. are
spread across different
files

A First Solution (5/6)

47

● Question to the Audience: What do folks think
of this?

○ We have an interface
■ Goblins and Orcs have to Sing()

● We’ve leaned into some
‘object-oriented tools’ to ensure
functionality is supported by derived
classes (pure virtual function)

○ We could have each class do different things if
needed.

■ i.e. add more member functions
○ The member functions are somewhat ‘piling up’ into

one single class.
■ We did have to repeat some code (DRY

Principle -- Don’t Repeat Yourself)
○ What about our ‘loop’ at line 37-39?

■ What if not all Orc’s or Goblin’s otherwise did
not have a Sing function?

● Perhaps different Monsters in this
hierarchy have different abilities.

● (Could dynamic_cast to check)

A First Solution (6/6)

48

● So to be clear
○ I want to maintain the inheritance hierarchy

■ That is appropriate -- Orc’s and
Goblins are a ‘type of’ Monster

● (is-a relationship)
○ I’m looking for a way to ‘extend’ this class --

again think at scale
■ A game project over the course of

3-years, we may not be able to predict
all behaviors.

■ Late in the project, we may need to
add functionality, and we may want to
avoid adding bugs

● There are some better defined
solutions for this that may help.

Design Pattern Goal(s) for today

49

What you’re going to learn today

● Brief Programming Review
● What design patterns are
● One behavioral design patterns

specifically:
○ Visitor Pattern

● This is not an ‘expert-level’ talk, but
aimed more at
beginners/intermediate

○ That said, I hope experts will derive some
value for looking at today’s pattern.

■ Or otherwise, be able to refresh and
point out some tradeoffs with
today’s pattern

Pretend these seats are filled :)
https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

50

https://pixnio.com/free-images/2017/03/11/2017-03-11-16-47-11-550x413.jpg

Design Patterns
 ‘templates’ or ‘flexible blueprints’ for developing software.

51

Design Patterns Book

● In 1994 a book came out collecting heavily used
patterns in industry titled “Design Patterns”

○ It had four authors, and is dubbed the “Gang of Four” book (GoF).
○ The book is popular enough to have it’s own wikipedia page:

https://en.wikipedia.org/wiki/Design_Patterns
○ C++ code samples included, but can be applied in many

languages.
○ This book is a good starting point on design patterns for

object-oriented programming

52
* See also the 1977 book “A Pattern Language: Towns, Buildings, Construction” by Christopher Alexander et al. where I believe the term design
pattern was coined.

https://en.wikipedia.org/wiki/Design_Patterns

Design Patterns Book * Brief Aside *

● In 1994 a book came out collecting heavily used patterns in industry titled
“Design Patterns”

○ It had four authors, and is dubbed the “Gang of Four” book (GoF).
○ It is popular enough to have a wikipedia page: https://en.wikipedia.org/wiki/Design_Patterns

○ C++ code samples included, but can be applied in many languages.
○ This is a good starting point on design patterns for object-oriented programming

53

● I really enjoyed this book (as a graphics programmer) for
learning design patterns.

○ There’s a free web version here:
https://gameprogrammingpatterns.com/

○ I also bought a physical copy to keep on my desk
○ (I am not commissioned to tell you this :))

https://en.wikipedia.org/wiki/Design_Patterns
https://gameprogrammingpatterns.com/

What is a Design Pattern?

● A common repeatable solution for solving problems.
○ Thus, Design Patterns can serve as ‘templates’ or ‘flexible blueprints’ for developing software.

● Design patterns can help make programs more:
○ Flexible
○ Maintainable
○ Extensible
○ (A good pattern helps satisfy these criteria)

54

● So design patterns are reusable
templates that can help us solve
problems that occur in software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

55
*Keep in mind there are more than 23 design patterns in the world

Design Patterns
Book (1/2)

Design Patterns
Book (2/2)
● So design patterns are reusable

templates that can help us solve
problems that occur in software

○ One (of the many) nice thing the
Design Patterns Gang of Four
(GoF) book does is organize the
23* presented design patterns into
three categories:

■ Creational
■ Structural
■ Behavioral

56
*Keep in mind there are more than 23 design patterns in the world

Today we are focusing on behavior of objects

I’ve highlighted the 11 behavioral patterns.

Design Pattern Categories

There are ‘3’ categories of design patterns

1. Creational
○ Provide program more flexibility on how to create objects, often avoiding

direct instantiation of a specific object.
2. Structural

○ Focus on using inheritance to compose interfaces and define objects in a
way to create new functionality.

3. Behavioral
○ Focuses on how to communicate between objects

57
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Behavioral Design Patterns (1/2)

● “Most of these design patterns are specifically concerned with communication
between objects.” [wiki]

58
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

Behavioral Design Patterns (2/2)

● “Most of these design patterns are specifically concerned with communication
between objects.” [wiki]

59
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The specific
pattern we’ll
look at today

https://en.wikipedia.org/wiki/Design_Patterns#Behavioral
https://en.wikipedia.org/wiki/Design_Patterns#Patterns_by_type

The Visitor Design Pattern
A Behavioral Design Pattern

60

Behavior Design Patterns

61

● Focus on communication between objects

The Visitor Design Pattern [wiki]

62

● Focus on communication between objects

https://en.wikipedia.org/wiki/Visitor_pattern

Resuming our game project...

63

Review of our First Solution

64

● Let’s now apply the visitor pattern to
our solution

○ In a similar way -- recall previously how we
moved all the ‘attributes’ to its own struct,
we’re going to move all the member
functions to a new class.

(Aside) UML Diagram of Visitor Pattern

65

● From the wikipedia
you can see a ‘UML’
diagram of the Visitor
pattern

○ To be honest -- I think
it’s better if we build
this up slowly with
our problem rather
than stare at this too
long

https://en.wikipedia.org/wiki/Visitor_pattern

https://en.wikipedia.org/wiki/Visitor_pattern

Visitor Pattern - Extending Behaviors

66

● So here’s our current hierarchy in our
current solution

Sing()
...

Sing()
...

Monster
(Base Class)

Visitor Pattern - Extending Behaviors

67

● Now part of our solution is going to be to
add a ‘MonsterVisitor’ class

○ The purpose of this ‘abstract class’ is to hold
behaviors (i.e. functions)

○ Thus we will avoid creating more member functions
within the ‘Orc’ and ‘Goblin’ concrete classes -- new
behaviors go in the ‘Monster Visitor’)

Sing()
...

Sing()
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

Visitor Pattern (1/8)

68

● Any classes derived
from ‘MonsterVisitor’
will be the functional
equivalent to adding a
‘Sing()’ member
function.

Sing()
...

Sing()
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (2/8)

69

● Monster Interface
‘connects’ to the ‘visitor
classes’, by
implementing an
‘accept’ member
function.

Sing()
...

Sing()
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (3/8)

70

● Monsters ‘connect’ to
the ‘visitor classes’, by
implementing an
‘accept’ member
function.

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (4/8)

71

● Can be read as “I
accept some
functionality from the
‘MonsterVisitor’
hierarchy

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (5/8)

72

● Important Observation
○ per-behavior that we

add (e.g.
DrawMonsterVisitor)

○ I need to add one
member function for
every class in the
‘Monster’ hierarchy (i.e.
Goblins, Orcs, etc.)

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (6/8)

73

● Important Observation
○ per-behavior that we

add (e.g.
DrawMonsterVisitor)

○ I need to add one
member function for
every class in the
‘Monster’ hierarchy (i.e.
Goblins, Orcs, etc.)

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (7/8)

74

● Open-Closed Principle
○ One property we can

observe visually is the
Open-Closed Principle

○ This means we can ‘add
new operations to existing
object (open), without
modifying the structure
(closed -- Monster is not
changed)

● The algorithm (i.e.
behavior) is thus separated
from the object

○ This is a ‘good thing’ if our
goal is ‘extensible’ software
design.

○ As you can imagine, we can
try out many different new
‘MonsterVisitors’ to try
different behaviors.

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Visitor Pattern (8/8)

75

● Note: However (from
previous slide) -- we
probably want to make
sure we are not adding
lots of different objects
to the ‘Monster
hierarchy’

○ Remember, we have to
implement (or remove)
functionality for each
object in our hierarchy --
so hopefully it is
relatively stable :)

accept(MonsterVisitor)
...

accept(MonsterVisitor)
...

Monster
(Base Class)

MonsterVisitor
(Base Class)

DrawMonsterVisitor
...

FightMonsterVisitor
...

Live Code Review

● Full Code Review
● (Do ask questions at any point)

76

(From Code Review) ‘Visitor Classes’

● Again, here’s where the functionality is
extended (top-right)

● Here is an example usage on a
collection (Bottom-right)

● Here is an example usage on a single
object (Bottom-left)

77

Design Pattern Summary

78

Question to Audience: Trade-offs (1/2)

● Pros
○ ??

● Neutral
○ ??

● Cons
○ ??

79

Question to Audience: Trade-offs (2/2)

● Pros
○ Observes Open-Closed Principle (Easy to extend behaviors)
○ Implementation details are isolated from class

● Neutral
○ When we do have to repeat our code, at least it is in same struct/class.

■ Pure virtual functions also can ensure all classes get updated
● Cons

○ Potentially makes it harder to introduce new types later in a project -- need to do lots of
potential implementation

○ Restricted to the public interface (or otherwise need to use getters to expose data)
○ Performance may be negatively affected

■ Lots of ‘polymorphism’ (double dispatch)
■ Potentially more ‘heap allocations’ and memory management needed.

80

Bonus if Time

81

std::visit and std::variant

● Now that we know about the visitor pattern
-- we can actually make use of some tools
in the C++ Standard Library

○ This is a more ‘functional style’ in some ways of
thinking about the problem.

○ We’re going to use a std::variant, and
implement (sort of like pattern matching) an
operator to ‘dispatch’ on for each type in the
std::variant.

● See [Church Encoding]

82

https://en.wikipedia.org/wiki/Church_encoding

Some High Level Takeaways

● We started with ‘programming paradigms’
○ That may have been a weird place to start -- but hopefully there is some observation about

moving around ‘data’ and ‘behaviors’
■ Each paradigm puts an emphasis on slightly different areas.

● We looked at a ‘real world problem’
○ In the sense that we’re ‘managing complexity’ in a system that may contain many objects and

data types
● The Visitor Pattern can help manage complexity when new behaviors need to

be added
○ There may be alternatives -- we may need to look at other paradigms (e.g. data-oriented in the

gaming space) to otherwise think about how we process data.
● Overall -- the Visitor is a good exercise in understanding how flexible software

creation can be, and the trade-offs that come with it

83

Further resources and training materials

84

● More patterns (and soon this one)
added here:
https://www.youtube.com/playlist?list
=PLvv0ScY6vfd9wBflF0f6ynlDQuaeK
Yzyc

○ Slides from this talk will be added to my
website shortly.

https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc
https://www.youtube.com/playlist?list=PLvv0ScY6vfd9wBflF0f6ynlDQuaeKYzyc

Thinking about
Design with Patterns

Visitor Pattern -- in C++
with Mike Shah

17:30 - 19:00 Thur, January 4, 2024

~90 minutes | Introductory Audience 85

Social: @MichaelShah
Web: mshah.io
Courses: courses.mshah.io

www.youtube.com/c/MikeShah

Thank you College of Farabi University of
Tehran and the Computer Engineering

Scientific Association

https://twitter.com/MichaelShah
http://mshah.io
http://courses.mshah.io
http://www.youtube.com/c/MikeShah

Thank you!

86

Empty Slide

87

